Exercise 5

Consider a rigid structure composed of point particles joined by massless rods. The particles are numbered $1,2,3, \ldots, N$, and the particle masses are $m_{v}(v=1,2, \ldots, N)$. The locations of the particles with respect to the center of mass are \mathbf{R}_{v}. The entire structure rotates on an axis passing through the center of mass with an angular velocity \mathbf{W}. Show that the angular momentum with respect to the center of mass is

$$
\mathbf{L}=\sum_{v} m_{v}\left[\mathbf{R}_{v} \times\left[\mathbf{W} \times \mathbf{R}_{v}\right]\right]
$$

Then show that the latter expression may be rewritten as

$$
\mathbf{L}=[\Phi \cdot \mathbf{W}]
$$

where

$$
\boldsymbol{\Phi}=\sum_{v} m_{v}\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\}
$$

is the moment-of-inertia tensor.

Solution

The angular momentum of mass v is the cross product of its position vector with its linear momentum vector.

$$
\mathbf{L}_{v}=\mathbf{R}_{v} \times \mathbf{p}_{v}
$$

The linear momentum is mass times linear velocity.

$$
\mathbf{L}_{v}=\mathbf{R}_{v} \times\left[m_{v} \mathbf{v}_{v}\right]
$$

m_{v} is a constant, so it can be brought in front.

$$
\mathbf{L}_{v}=m_{v}\left[\mathbf{R}_{v} \times \mathbf{v}_{v}\right]
$$

The linear velocity is the cross product of angular velocity and the position vector.

$$
\mathbf{L}_{v}=m_{v}\left[\mathbf{R}_{v} \times\left[\mathbf{W} \times \mathbf{R}_{v}\right]\right]
$$

To obtain the total angular momentum, we have to sum the angular momentum of each mass in the rigid structure.

$$
\mathbf{L}=\sum_{v=1}^{N} \mathbf{L}_{v}
$$

Therefore,

$$
\mathbf{L}=\sum_{v=1}^{N} m_{v}\left[\mathbf{R}_{v} \times\left[\mathbf{W} \times \mathbf{R}_{v}\right]\right] .
$$

In order to write this in the desired form, make use of the so-called BAC-CAB vector identity.

$$
\mathbf{A} \times[\mathbf{B} \times \mathbf{C}]=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
$$

Doing so gives us

$$
\mathbf{L}=\sum_{v=1}^{N} m_{v}\left[\mathbf{W}\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right)-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right]
$$

Move \mathbf{W} to the right side of the term.

$$
\mathbf{L}=\sum_{v=1}^{N} m_{v}\left[\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \mathbf{W}-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right]
$$

We can write \mathbf{W} in terms of the unit tensor $\boldsymbol{\delta}$ as $\boldsymbol{\delta} \cdot \mathbf{W}$. This will be shown now.

$$
\begin{aligned}
\boldsymbol{\delta} \cdot \mathbf{W}=\left(\sum_{i=1}^{3} \sum_{j=1}^{3} \boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j} \delta_{i j}\right) \cdot\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} W_{k}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{i}\left(\boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k}\right) \delta_{i j} W_{k} & =\sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{j}\left(\boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k}\right) W_{k} \\
& =\sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{j} \delta_{j k} W_{k} \\
& =\sum_{k=1}^{3} \boldsymbol{\delta}_{k} W_{k} \\
& =\mathbf{W}
\end{aligned}
$$

Hence,

$$
\mathbf{L}=\sum_{v=1}^{N} m_{v}\left[\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right)[\boldsymbol{\delta} \cdot \mathbf{W}]-\mathbf{R}_{v}\left(\mathbf{R}_{v} \cdot \mathbf{W}\right)\right] .
$$

Factor out W.

$$
\mathbf{L}=\sum_{v=1}^{N} m_{v}\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\} \cdot \mathbf{W}
$$

Therefore,

$$
\mathbf{L}=\boldsymbol{\Phi} \cdot \mathbf{W}
$$

where

$$
\boldsymbol{\Phi}=\sum_{v=1}^{N} m_{v}\left\{\left(\mathbf{R}_{v} \cdot \mathbf{R}_{v}\right) \boldsymbol{\delta}-\mathbf{R}_{v} \mathbf{R}_{v}\right\}
$$

is the moment-of-inertia tensor.

